La probabilidad mide la frecuencia con la que ocurre un resultado en un experimento bajo condiciones suficientemente estables. La teoría de la probabilidad se usa extensamente en áreas como la estadística, la matemática, la ciencia y la filosofía para sacar conclusiones sobre la probabilidad de sucesos potenciales y la mecánica subyacente de sistemas complejos.
La palabra probabilidad no tiene una definición consistente. De hecho hay dos amplias categorías de interpretaciones de la probabilidad: los frecuentistas hablan de probabilidades sólo cuando se trata de experimentos aleatorios bien definidos. La frecuencia relativa de ocurrencia del resultado de un experimento, cuando se repite el experimento, es una medida de la probabilidad de ese suceso aleatorio. Los bayesianos, no obstante, asignan las probabilidades a cualquier declaración, incluso cuando no implica un proceso aleatorio, como una manera de representar su verosimilitud subjetiva.
Probabilidad de eventos
Espacio Muestral.- ( S ) es el conjunto universo de todos los resultados posibles de un experimento dado. Cada uno de sus elementos se denomina punto muestral o muestra.
Ejemplos
1 ) Si el experimento se basa en la elección de un dígito, entonces el espacio muestral es:
U = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 }
2 ) Lanzamiento de monedas:
a ) Si el experimento se basa en el lanzamiento de una moneda, el espacio muestral tiene dos elementos, cara ( c ) y sello ( s ):
U = { c , s }
b ) Dos monedas, el espacio muestral tiene 4 elementos:
U = { ( c , c ) , ( c , s ) , ( s , c ) , ( s , s ) }
c ) Tres monedas, tiene 8 elementos:
U = { ( c , c , c ) , ( c , c , s ) , ( c , s , c ) , ( c , s , s ) , ( s , c , c ) , ( s , c , s ) , ( s , s , c ) , ( s , s , s ) }
d ) n monedas, tiene 2 n elementos.
Ocurrencia de Eventos
Para calcular la probabilidad de eventos es necesario que éstos se comporten de una maner más o menos estable. Precisamente, se echa mano de la regularidad estadística, que es la propiedad de los fenómenos aleatorios, y que consiste en que al aumentar el número de repeticiones de un experimento en condiciones prácticamente constantes, la frecuencia relativa de ocurrencia para cada evento tiende a un valor fijo.
Sin embargo, al momento de definir la probabilidad de un evento podemos tomar en cuenta los siguientes criterios:
La probabilidad subjetiva de un evento se la asigna la persona que hace el estudio, y depende del conocimiento que esta persona tenga sobre el tema. Precisamente por su carácter de subjetividad no se considera con validez científica, aunque en la vida diaria es de las más comúnes que se utilizan al no apoyarse más que en el sentido común y los conocimientos previos, y no en resultados estadísticos.
La probabilidad frecuencial de un evento es el valor fijo al que tienden las frecuencias relativas de ocurrencia del evento de acuerdo a la regularidad estadística. Esta definición sería la más real, pero proporciona probabilidades aproximadas, es decir, proporciona estimaciones y no valores reales. Además, los resultados son a posteriori, pues se necesita realizar el experimento para poder obtenerlo.
La probabilidad clásica de un evento E, que denotaremos por P(E), se define como el número de eventos elementales que componen al evento E, entre el número de eventos elementales que componen el espacio muestral:
http://www.uaq.mx/matematicas/estadisticas/xu4.html pegar esta imagen...
Permutaciones y Combinaciones
Permutaciones (u ordenaciones) con repetición
Las permutaciones son también conocidas como ordenaciones, y de hecho toman este nombre porque son ordenaciones de r objetos de n dados. En este curso las representaremos como ORnr ó nORr.
Por ejemplo: Sea A={a,b,c,d}, ¿cuántas "palabras" de dos letras se pueden obtener?
Se pide formar permutaciones u ordenaciones de 2 letras, cuando el total de letras es 4. En este caso r=2 y n=4.
Las "palabras" formadas son: aa, ab, ac, ad, ba, bb, bc, bd, ca, cb, cc, cd, da, db, dc, dd. En total son 16.
En general, si se toman r objetos de n, la cantidad de permutaciones u ordenaciones con repetición obtenidas son:
ORnr = nORr = n r
Permutaciones (u ordenaciones) sin repetición
En este caso, a diferencia del anterior, se realizan ordenaciones de r objetos de n dados atendiendo a la situación de cada objeto en la ordenación. Su representación será Pnr ó nPr.
Por ejemplo: Sea el mismo conjunto A={a,b,c,d}, ¿cuántas ordenaciones sin repetición se pueden obtener?
Lo que resulta es: ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc. Son 12 en total.
En general, si se toman r objetos de un total de n, la cantidad de permutaciones
Pnr = nPr =
El Excel cuenta con la función PERMUTACIONES(n,r) que realiza el cálculo.
Combinaciones
Es una selección de r objetos de n dados sin atender a la ordenación de los mismos. Es decir, es la obtención de subcojuntos, de r elementos cada uno, a partir de un conjunto inicial de n elementos. La denotaremos con Cnr, nCr ó .
Por ejemplo: Si tomamos el mismo conjunto A={a,b,c,d}, ¿cuántos subconjuntos de 2 elementos cada uno se pueden obtener?
Haciéndolos se obtienen: {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}. Son seis los subconjuntos.
En general, si de n objetos dados se hacen combinaciones de r objetos cada una, el número de combinaciones obtenidas son:
Cnr = nCr =
o, que es lo mismo,
Cnr = nCr =
En Excel la función COMBINAT(n,r) calcula las combinaciones de n objetos tomando r de ellos.
Diagramas de Arbol
http://thales.cica.es/rd/Recursos/rd98/Matematicas/28/6.html
Principio Aditivo de la Probabilidad
Si se desea llevar a efecto una actividad, la cuál tiene formas alternativas para ser realizada, donde la primera de esas alternativas puede ser realizada de M maneras o formas, la segunda alternativa puede realizarse de N maneras o formas ..... y la última de las alternativas puede ser realizada de W maneras o formas, entonces esa actividad puede ser llevada a cabo de,
M + N + .........+ W maneras o formas
Ejemplos:
1) Una persona desea comprar una lavadora de ropa, para lo cuál ha pensado que puede seleccionar de entre las marcas Whirpool, Easy y General Electric, cuando acude a hacer la compra se encuentra que la lavadora de la marca W se presenta en dos tipos de carga ( 8 u 11 kilogramos), en cuatro colores diferentes y puede ser automática o semiautomática, mientras que la lavadora de la marca E, se presenta en tres tipos de carga (8, 11 o 15 kilogramos), en dos colores diferentes y puede ser automática o semiautomática y la lavadora de la marca GE, se presenta en solo un tipo de carga, que es de 11 kilogramos, dos colores diferentes y solo hay semiautomática. ¿Cuántas maneras tiene esta persona de comprar una lavadora?
Solución:
M = Número de maneras de seleccionar una lavadora Whirpool
N = Número de maneras de seleccionar una lavadora de la marca Easy
W = Número de maneras de seleccionar una lavadora de la marca General Electric
M = 2 x 4 x 2 = 16 maneras
N = 3 x 2 x 2 = 12 maneras
W = 1 x 2 x 1 = 2 maneras
M + N + W = 16 + 12 + 2 = 30 maneras de seleccionar una lavadora
Principio Multiplicativo de la Probabilidad
Si se desea realizar una actividad que consta de r pasos, en donde el primer paso de la actividad a realizar puede ser llevado a cabo de N1 maneras o formas, el segundo paso de N2 maneras o formas y el r-ésimo paso de Nr maneras o formas, entonces esta actividad puede ser llevada a efecto de;
N1 x N2 x ..........x Nr maneras o formas
El principio multiplicativo implica que cada uno de los pasos de la actividad deben ser llevados a efecto, uno tras otro.
Ejemplos:
1) Una persona desea construir su casa, para lo cuál considera que puede construir los cimientos de su casa de cualquiera de dos maneras (concreto o block de cemento), mientras que las paredes las puede hacer de adobe, adobón o ladrillo, el techo puede ser de concreto o lámina galvanizada y por último los acabados los puede realizar de una sola manera ¿cuántas maneras tiene esta persona de construir su casa?
Solución:
Considerando que r = 4 pasos
N1= maneras de hacer cimientos = 2
N2= maneras de construir paredes = 3
N3= maneras de hacer techos = 2
N4= maneras de hacer acabados = 1
N1 x N2 x N3 x N4 = 2 x 3 x 2 x 1 = 12 maneras de construir la casa
El principio multiplicativo, el aditivo y las técnicas de conteo que posteriormente se tratarán nos proporcionan todas las maneras o formas posibles de como se puede llevar a cabo una actividad cualquiera.
Axiomas de la Probabilidad
Recordemos primero que las frecuencias relativas de una distribución tenían las siguientes propiedades:
1.-Las frecuencias relativas son mayores o iguales que cero.
2.-La frecuencia relativa del espacio muestral es igual a la unidad.
3.-Si dos eventos son mutuamente excluyentes, es decir que no ocurren simultáneamente, entonces la frecuencia relativa de su unión es la suma de las frecuencias relativas de cada uno.
Tomando en cuenta que la probabilidad de un evento, de acuerdo a la definición ya expuesta, es la frecuencia relativa cuando se aumenta el tamaño de la muestra, se tienen lo siguiente.
Si E es un evento de un espacio muestral S y P(E) es la probabilidad de E, entonces se satisfacen los axiomas de la probabilidad:
1.-0 £ P(E) £ 1.
2.-P(S) = 1.
3.-Si E1, E2, ... , En son eventos mutuamente excluyentes, entonces:
http://www.uaq.mx/matematicas/estadisticas/xu4.html pgar formula...
No hay comentarios:
Publicar un comentario